硬脆材料磨削加工机理的理论分析
发布日期:2012-08-29 兰生客服中心 浏览:3265
1 引言
![]() 图1 硬脆材料(玻璃)的磨削模型 | |
![]() 图2 磨粒压入平面时的压力分布情况 | ![]() 图3 应力区分布图 |
2 硬脆材料磨削模型的建立
3 试验结果与讨论
- 硬脆材料在磨粒挤压作用下的塑性行为
- 硬脆材料在磨粒推挤作用下的断裂行为
- 在切削试验中可观察到,当切深较小时(即磨削初始阶段),硬脆材料的变形表现为塑性变形。从应力场的角度分析,硬脆材料只有在围压足够大时,才能象金属材料一样表现出良好的塑性,围压越大,塑性越好。
- 由于任何磨粒的端部均有一定的圆弧半径,因而可将磨粒端部近似看作一个半径为R的球体。当磨粒在垂直力P作用下压向玻璃表面时,其与玻璃的接触面边缘为一个圆。该圆半径为
a=[
3
(1-µ2)
PR
]½
2
E
(1)
- 接触面上的压力分布可用q表示为(见图2)
q=
3
P
(a2-r2)½
2
pa3
(2)
- 由图2可见,在压力面边缘的压力分布为0,而在压力面中心(r=0 处)压力分布最大,用q0表示此中心处压力,由式(2)可得
q0=
3
P
2
pa3
(3)
- 在分布力q的作用下,玻璃内的应力可分为Ⅰ区和Ⅱ区,如图3所示。在Ⅰ区内,玻璃受到各个方向的压应力作用;在Ⅱ区内,玻璃受到压应力和拉应力的综合作用。
- 在对称轴(Z轴,位于Ⅰ区)上,正应力的海尔茨公式为
{
sr|r=0=sq|r=0=-(Hu)q0(1-
z
arctan
a
)+
q0
a2
a
z
2
z2+a2
sz|r=0=-q0
a2
r2+a2
(4)
- 式中应力均为主应力,负号表示压应力。随着与压力面(Z 轴)距离的增大,sr、sq、sz均减小,而sr=sq比sz减小得更快。当z=0时,则有
{
sr|r=0=sq|r=0=-
1+2u
q0
2
sr|r=0=-q0
- 若选取内摩擦系数u=0.3,则压力面中心的压应力为
{
sr|r=0=sq|r=0=-0.8q0
sr|r=0=-q0
- 由此可见,在压力面中心点的材料受到围压P=0.8q0、偏压∆q=0.2q0的作用,接近于各自均匀的压缩状态,在围压数倍于偏压的情况下,材料几乎不发生破坏。离开中心点后,材料受到的围压和偏压均减小,但围压比偏压减小更快,例如,在z=a/2和z=a处(r=0)的应力状态分别为
{
sr|r=0=sq|r=0=-0.18q0
(z=a/2)
sr|r=0=-0.8q0
{
sr|r=0=sq|r=0=-0.029q0
(z=a)
sr|r=0=-0.5q0
- 由上列四式可知,离压力面中心点越远,材料受到的围压越小,因此材料更有可能在压力面下方一定距离处首先发生破坏,开裂方向平行于最大压应力方向(Z 轴方向),此裂纹即为中位裂纹(MC)。当压力不足以产生中位裂纹时,在压力面中心附近区域的材料将发生明显的塑性变形,其它各处的材料则保持弹性状态。
- 在接触面边缘(图3中Ⅱ区),sz=0,sr=-sq=[(1-2u)/3]q0,此时拉应力达到最大值,由sr引起的裂纹即为赫兹裂纹(CC)。在Ⅱ区以及Ⅰ、Ⅱ区毗邻的区域,由于不具备高围压条件,因此材料未表现出塑性。
- 由此可见,硬脆材料在切深很小时,具备了良好的塑性变形条件,从而形成磨削过程中的犁沟阶段。即使在脆性切削阶段,与磨粒接触的材料表面仍表现出良好的塑性变形(但下层材料发生了破坏)。
- 脆性材料(如玻璃)与塑性材料(如金属)在单轴拉伸、扭转时的断裂形式对比见下表。可见,金属的断裂方向平行于最大剪应力方向,符合最大剪应力准则;而玻璃的断裂方向则垂直于最大拉应力方向,符合最大拉应力准则。
表 硬脆材料与金属材料的断裂形式对比
断裂形式
金属材料
脆性材料
拉伸
扭转
断裂方向
平行于最大剪应力
垂直于最大拉应力
符合准则
最大剪应力准则
最大拉应力准则
- 研究表明,金属材料在单轴或多轴压缩时的破坏仍符合最大应力原则,而脆性材料的破坏机理至今仍不十分清楚。近一、二十年的研究表明,在单轴压缩或围压压缩时,脆性裂纹总是趋于剪切载荷最小的方向(即压应力最大的方向),大多数裂纹是张性的;随着外应力的增大,微裂纹数量不断增加,大量微裂纹相互交错连接,致使脆性材料发生完全破坏。同时,随着围压的增大,材料的塑性也增大,微裂纹的扩展方向将偏离最大压应力方向。此时,一部分微裂纹的扩展是张性的,另一部分则是剪性的;当围压很高时,则主要发生剪切破坏。
- 硬脆材料在磨粒作用下的受力情况较复杂,不能简单归结为张性断裂或剪切断裂。在磨粒刃尖附近,材料受到很高的围压,因此将主要产生剪切移动(犁沟)或剪切破坏形成的密实核;在远离磨粒刃尖的区域,则主要发生大块张性崩碎。
- 材料与磨粒两侧接触处因受到很大张应力而发生开裂,形成图4所示的蹄状裂纹(HC)。蹄状裂纹与球体侵入时产生的赫兹裂纹本质上是相同的。当蹄状裂纹扩展方向与切削方向成较大角度(如接近90°)时,由于受到前方阻力,促使蹄状裂纹扩展的张应力很快衰减,使蹄状裂纹停止扩展。当蹄状裂纹扩展方向与切削方向成较小角度时,压应力使蹄状裂纹不断扩展并逐渐趋于与压应力平行,从而导致沟槽两侧向产生豁口;当磨粒切削到边缘时,由于s1近似为零,因此蹄状裂纹可向两侧不停扩展,从而产生崩边。蹄状裂纹从产生到扩展都是张性的。
图4 蹄状裂纹示意图
图5 裂纹应力示意图
- 在磨粒作用下,脆性材料并不只产生蹄状裂纹。事实上,在磨粒周围整个强应力作用区内任何地方均可能发生开裂。正是由于众多裂纹相互交贯,才使切屑呈粉碎状而非一整块,同时在被加工材料表面留下许多裂纹。
- 当切削深度和切削宽度均很小时,脆性材料不发生开裂,只形成光滑的塑性沟槽,其作用机理可用图5所示结构应力强度因子来解释。
- 如图5所示,无限大的平板中有直径为D的圆孔,孔内承受均匀压力P,孔两边有长度为a的裂纹。裂纹的应力强度因子为
KI=FPp(
D
+a)½
2
(5)
- 近似认为圆孔直径D与磨粒切削宽度相等,压力P与磨粒棱面与材料的接触应力相等,将长度为a的裂纹视为材料中的天然裂纹,则由式(5)可知,在接触压力和天然裂纹长度一定的情况下,切削宽度越小,强度因子KI越小。当KI小于某一临界值KIC时,断裂就不会发生。此时,KIC为材料的断裂韧度。
- 脆性材料(如玻璃)与塑性材料(如金属)在单轴拉伸、扭转时的断裂形式对比见下表。可见,金属的断裂方向平行于最大剪应力方向,符合最大剪应力准则;而玻璃的断裂方向则垂直于最大拉应力方向,符合最大拉应力准则。
4 结论
上一篇:替代磨削经济性好的硬车刀具和技术
下一篇:硬质合金刀具材料的研究现状
-
数控机床车刀维护与保养的主要内容
数控机床车刀维护与保养主要包括液压系统、主轴润滑系统、导轨润滑系统、冷却系统、气压系统。日检就是根据各系统的正常情况来加以检测。如当进行主轴润滑系统的过程检测时,电源灯应亮,油压泵应正常运转,若电源灯不亮,则应保持主轴停止状态,与机械工程师
2015-08-03 -
数控车床对刀原理及对刀方法分析
对刀的含义的就是要在数控车床正常工作之前,先要确定好每一把刀具的位置,这样才能保证车床的工作质量,在确定位置的时候就是要求刀偏值,也即在工件坐标系与数控车床坐标系中确定具体刀位点,这就需要选择合适的数控车床参考点,并做好一系列的相关工作。
2015-07-30 -
数控车床可转位刀具的结构特点和分类
(1) 数控车床可转位刀具特点数控车床所采用的可转位车刀,其几何参数是通过刀片结构形状和刀体上刀片槽座的方位安装组合形成的,与通用车床相比一般无本质的区别,其基本结构、功能特点是相同的。但数控车床的加工工序是自动完成的,因此对可转位车刀的要
2015-07-21 -
数控机床刀柄系统的选择方法
工具系统的选择是数控机床配置中的重要内容之一,因为工具系统不仅影响数控机床的生产效率,而且直接影响零件的加工质量。根据数控机床(或加工中心)的性能与数控加工工艺的特点优化刀具与刀柄系统,可以取得事半功倍的效果。 一、数控机床常用刀柄的分类
2015-07-06