高速切削

发布日期:2012-10-28    兰生客服中心    浏览:3753

  刀具直径越小,有效切削工件所需的主轴转速就越高。用微型刀具进行铣削、钻削、铣螺纹和雕铣加工时,采用转速范围 6000~60000r/min的高频主轴最为理想。高速切削技术采用了高转速、小步距、大进给的加工策略。试想,移动你的手通过燃烧着的蜡烛火苗,如果你的手移动缓慢,火苗就有足够时间灼伤你的手;而如果你的手快速掠过,火苗就来不及灼伤皮肤。用微型刀具进行高速切削加工的原理也与此类似,当刀具快速移动时,切削热就来不及传入工件中并造成各种问题。

  在切削加工过程中,刀具不断将切屑切离工件。所产生的切削热约有40%来源于刀具每一个刀面与切屑的摩擦发热,另有约20%来源于切屑的变形 (弯曲)发热。因此,总共有约60%的切削热来源于切屑内部。高速切削技术尝试利用切屑带走大部分热量,以实现更为清洁的切削。较高的加工质量是基于良好 的刀具冷却、较低的切削力和因此而减小的加工振动。

  采用高主轴转速可将切屑载荷(切深)减小到0.005″(0.13mm)以下,如此小的切深能显著减小刀具与工件材料之间的切削力。高速/小切 削力加工产生的热量较少,可减小刀具偏差,并可实现对薄壁工件的加工。由于具有这些优点,采用高速切削可以获得较好的加工表面质量,切削温度较低,工件易 于夹持,加工精度也较高。

  微细切削加工主要 是指对零件尺寸在1mm以下、加工精度为0.01~0.001mm的微细尺寸零件的加工;超微细加工是指对尺寸在1µm以下的超微细零件的加工;纳米级超 微细加工是指对微细度为1nm以下的零件进行的加工。实现纳米级超微细切削加工主要存在以下技术难点:

  材料微量加工性的影响

  材料的去除过程不仅取决于切削刀具,同时也严格受制于被加工材料本身。超微细切削加工材料的选择以纳米级的表面质量为前提,称为材料的“微量加工性”(可用纳米级表面粗糙度及在某一加工距离上对刀具磨损的可忽略性来定义)。影响材料微量加工性的因素包括被切削材料对金刚石刀具的内部亲合性(化学反应)、材料本身的晶体结构、缺陷、分布和热处理状态等(如多晶体材料的各向异性对零件加工表面完整性具有较大影响)。

  单位切削力大

  微细切削是一种极薄切削,切削厚度可能小于晶粒的大小,故切削力的特征是切削力微小,但单位切削力非常大。实现纳米级超微细加工的物理实质是切 断材料分子、原子间的结合,实现原子或分子的去除,因此切削力必须超过晶体内部的分子、原子结合力。当切削深度和进给量极小时,单位切削面积上的切削力将 急剧增大,同时产生很大的热量,使刀刃尖端局部区域的温度升高,因此在微细切削时对刀具要求较高,需采用耐磨、耐热、高温硬度高、高温强度好的超硬刀具材 料。在切削铝合金等有色金属时,最常用的是金刚石刀具。

  刃口圆弧半径对超微量切削厚度的限制

  刀具刃口半径限制了其最小切削厚度,刀具刃口半径越小,允许的最小切削厚度也越小。由表1可知

  hDmin=(0.165~0.246)r

  目前常用的金刚石刀具的刀刃锋利度约为r=0.2~0.5µm,最小切削厚度可达0.03~0.15µm;经过特殊刃磨的刀具可达 r=0.1µm,最小切削厚度可达0.014~0.026µm。若需加工切削厚度为1nm的工件,刀具刃口半径必须小于5nm,而目前对这种极为锋利的金 刚石刀具的刃磨和应用都非常困难。

  采用应变梯度理论,可以预测出尺度效应和位错影响,获得与试验相吻合的结果,在微机械与微构件领域已成功分析了微米压痕、裂纹尖端场、界面裂纹、细丝扭转与微薄梁弯曲等问题,并开始在微成型研究中得到应用,采用应变梯度塑性理论研究微切削变形将是微切削机理研究的方向。另外,微切削时的主轴转速一般都非常高,加工精度要求非常精密,因此微切削具有高速精密切削的特征,将高速精密切削机理的研究成果应用到微切削领域也是微切削研究的趋势。微切削机理的模拟仿真

  主要利用有限元技术和分子动力学方法,有限元技术以连续介质力学为基础,因此分子动力学方法更适用于微切削。采用分子动力学方法对微切削机理的模拟仿真研究在世界范围内已开展了十几年,研究工作主要是建立原子、分子尺度的切削模型,从原子、分子角度去理解切屑和表面形成过程,解释材料性能、刀具几何参数和工艺参数对微切削应力与应变分布、切削力、切削温度和已加工表面质量等的影响。

  微切削力

  微切削时的切削力较小,但单位切削力较大,且切深抗力大于主切削力。切削力随切削深度的减小而增大,且在切深很小时切削力会急剧增大,这就是切削力的尺寸效应。切削力尺寸效应的存在使得普通切削的切削力模型已不适合于微切削。切削力的尺寸效应与刀具刃口半径关系密切,由于刃口圆弧半径的存在,切削刃在微量切削时形成一个较大的负前角,使切削变形增大,切削时的单位切削力增大。如切削深度进一步减小时,切削有可能在晶粒内部进行,此时,切削力必须大于晶体内部的分子、原子结合力,因而使单位切削面积上的切削力急剧增大。微切削时的切削力还与晶向和晶界有关。