切削力与切削热

发布日期:2012-10-29    兰生客服中心    浏览:5157

  在切削低温区,浇注冷却的效果好于风冷;而在高温区泛风冷的效果好于浇注冷却。由图3可以看到,在自然冷却、风冷(-15℃)和传统冷却的切削中,在工艺参数相同的条件下,自然冷却切削力最大,亚干式切削力最小。由图4可知,在自然冷却、浇注冷却、风冷(-23℃)和亚干式切削中,切削热依次减少。对此可分析如下:

  在切削用量相同,刀具几何参数一致的情况下,影响切削力的最主要的因素是工件材料、切削时的冷却状况和刀具磨损。其中工件材料的物理机械性能及状态影响最大,材料的强度、硬度越高,则创剪应力)越大,从而切削力越大。而本试验工件材料、刀具材料均一致,在各切削参数相同的前提下,切削力应基本趋于一致。因此,试验结果不一致应归结于冷却方法的不一致,是不同的冷却方法改变了切削区材料的某些性能以及相应的刀具磨损状况。

  研究表明:低温切削时体心立方晶格材料易发生低温脆化。此时材料的机械性能受到金属内部晶格位错影响,在低温下金属内部位错热能低,其塑性变形应力比高温下抗力大,因而能提高材料强度;而低温脆性是由孪生引起的龟裂所产生的。体心立方晶格金属引起滑移所需屈服应力随温度急剧增大,但孪生应力因温度不同而产生的变化不大因此,低温下孪生应力比滑移应力小,低温脆性是由孪生优先发生的。由此可见:低温强风冷却引发被切削材料的低温脆性是切削力小于其它冷却方法的主要原因;同时低温降低了切削热温度,保护了力具的切削性能,也从另一侧面延缓因刀具磨损引发切削力增大的趋势。

  在冷风冷却切削中,亚干式切削的切削温度低于一般的冷风切削,这应归功于亚干式切削中添加剂的润滑作用。金属切削中所消耗的全部功转化为热,而热主要产生在第一变形区和第二变形区;工件材料在第一变形区受剪切时,随着刀具相对于工件的连续运动,剪切应力增大,并伴有加工硬化现象,在整个切削宽度上存在着极大的温度梯度,通常在600℃左右,切削力也由此大大减小;随着切削在第二变形区的继续进行,切屑沿前刀面流出,受到前刀面的挤压和摩擦作用,使紧挨刀具前刀面的切屑温度最高可达750℃左右;在没有润滑液、切削温度很高的情况下,前刀面与切屑是粘结摩擦或内摩擦;当润滑液渗到切屑、刀具与工件的接触表面之间以后,粘附在金属表面形成润滑膜,以此减小切屑与刀具、工件之间的摩擦系数、减轻粘结现象,以达到减小切削力和减少切削热的目的。

  另一方面,按照切削方程式f=p/4-b+a(f为剪切角,b为摩擦角,a为刀具前角),减小摩擦系数意味着夕变小,协增大,从而使前刀面与切屑的接触长度减小,减少了摩擦,因而降低了切削温度,这种效果是切削液冷却和亚干式切削所共有的。但在高压、高温下油膜厚度会减薄,并部分蒸发,金属表面的凸凹不平极易破坏油膜,使之趋向于边界润滑。因此切削过程中润滑介质的润滑作用取决于润滑介质的润滑性能与其渗透性、成膜能力等:亚干式切削过程中切削区材料有低温脆性、添加剂的渗透作用强,使之较切削液冷却时的切削温度更低。

更多相关信息