高速机床用直线电动机和精密高速滚珠丝杠副
发布日期:2011-11-25 兰生客服中心 浏览:3224
作为装备制造业核心加工设备的数控机床正向高速、高效、高精度、智能化、复合化、环保化方向发展。在高速和超高速加工中,要求高的动态特性和控制精度;瞬间达到高速和在高速运行中瞬间准停;振动小、噪声低、运行平稳;可靠性高、寿命长。在各类线性驱动元部件中,精密高速滚珠丝杠副(Precicion High-speed Ball Screws——本文简称PHS-BS)和AC直线电动机(AC Linear Motor本文简称AC-LM)是大型、精密、高速数控装备的快速伺服进给系统中能满足上述要求的核心功能部件。
迈入数控装备领域的AC直线电动机
图1 中国台湾HIWIN公司的LMS、LMC伺服直线电动机 |
向AC直线电动机挑战的精密高速滚珠丝杠副
图2 北京机床研究所精密机电公司的μ1000 系列立式加工中心三轴采用PHS—BS实现快速进给和高精度定位 |
- 对循环返向装置进行了优化设计。试验研究证明循环返向装置是直接影响PHS-BS滚珠流畅性和动态特性、振动和噪声的关键环节,它制约了DN值的提高。早期的PHS-BS采用厚壁切入式的导珠管,使滚珠螺母螺旋线的延伸方向与导珠管对接。近年又流行一种新的内循环结构,它是在滚珠螺母的螺旋线两端配置“端塞式”返向装置,使DN值达到200000,噪声降低6-7dB(A),螺母径向尺寸缩小30%左右。
- 优化滚珠链结构。为减小高速旋转时滚动体的离心力,采用小径球、Si3N4陶瓷球或DS改质球。为了隔断滚动体在高速运转时相互碰撞、挤压、摩擦,在滚珠链中增加用特殊工程塑料制作并有润滑功能的隔离器,从而有效降低温升和噪声,增加滚动体的流畅性。
- 为减少高速时“楔效应”对滚动体流畅性的影响,对内外螺纹滚道的几何参数进行优化设计,并降低滚道面的粗糙度,或对表面进行改质处理,改善摩擦特性。
- 将滚珠丝杠做成空心,从丝杠内部实施强冷。有的企业还在内孔中配置阻尼棒,抑制高速时的振动。HIWIN公司的“Cool Type I”系列还同时对滚珠螺母实施强冷。
- 近年德国Rexroth、INA、日本THK等公司推出AC电机直接驱动滚珠螺母的高速线性驱动装置(详见《中国机械与金属》2005年12期)。
- 丝杠和螺母分别由两个AC电机驱动,借助于两者转速大小和施转方向的叠加,既可成倍提速,又能实现微量进给。
- 充分利用滚珠丝杠副能完成同步运动的功能,采用双电机双丝杠驱动方式,提高伺服进给系统在高速时的平稳性,改善动能特性,例如:美国CINCINNATI LAMB公司的HPC-800HP高速卧式加工中心(见图3)。此外,德国DMG的DMC63H,瑞士DIXI公司的DHP-80-5x,日本牧野公司的A55E,中国大连机床集团的DHSC500,宁江机床集团的NJ-5HMC40等,也采用双电机、双丝杠驱动。
图3 美国CINCINNATI LAMB公司的HPC-800HP卧式高速加工中心X、Y、Z三轴采用双PHS-BS驱动,V=80m/min,加速度1.5g。框中框结构的双驱动大大提高了快速进给的稳定性 |
双星同台亮相、各显亮点
- 各坐标轴全部配置AC-LM驱动的“快速型”数控装备。例如:DMC85V Linear、DMC75V Linear、DMC105V Linear、DMC60H Linear、DMC80H Linear以及DML80-Fine Cutting激光加工机等。
- 混合驱动型。例如:DMF500 Linear动柱式大型立式加工中心,在X轴(行程5m)配置AC-LM,V=100m/min;而在Y、Z轴则采用PHS-BS,V=60m/min。此外,CTV250、CTX300、CTX420、DMC104V、DMF220F、DMF360F等均属混合驱动型。
- 各坐标轴全部配置PHS-BS驱动的“强力型”加工中心。例如:DMC63H高速卧式加工中心,X、Y、Z三轴全部采用PHS-BS驱动(Φ50,Pn=35),V=80m/min,加速度1g,定位精度0.008mm。此外还有DMC80H和DMC100H、DMC125H (duo BLOCK)以及DMC60T等。
PHS-BS | AC-LM | 说明 | |
线性伺服进给系统主要环节 | CNC-伺服电机-无隙连轴器-止推轴承-PHS/BS-冷却系统-滚动导轨-螺母座-工作台 | 闭环CNC-电机动子-强冷系统-滚动导轨-位置感测器-工作台 | AC-LM称为直接驱动,PHS-BS是非直接驱动 |
驱动线速度(m/min) | 60~100(120),速度范围有限 | 60~200(600),速度范围广 | 前者当n↑,Pn↑;Vmax=200m/min;后者最小:1µm/s |
加速度(g) | 0.5~1.5(2) | 0.5~10 | 都要求运动部件轻量化 |
定位、重复定位精度(µm) | 较高(2~5) | 很高。光栅闭环控制:0.1~0.01 | AC-LM在高速位移状态下可达亚微米级定位精度,跟踪误差小 |
运动的平稳性(%速度) | 较好,10% | 很好,1% | PHS-BS采用双头螺纹、双丝杆驱动可改善运动的平稳性 |
行程范围 | 有限 | 无限 | PHS-BS一般不超过5m |
控制系统 | 较简单,技术较成熟 | 较复杂,要求高(全闭环控制) | 负载变化直接作用于AC-LM,由于端部效应、齿槽效应等因素,使伺服控制复杂化,难度加大 |
热特性 | 已有较成熟的技术抑制温升与热变形 | 处于主机腹部的AC-LM是高发热部件,需采取强冷措施 | 达到相同目的,后者要付出更大的代价 |
工作噪音 | 较低 | 静音 | 前者已开发出高速静音产品 |
轴向推力 | 较大(与丝杆参数有关) | 较小(一般<10kN) | 采用多台AC-LM并联,可提高轴向推力,但布局困难 |
产生相同推力所消耗的能量 | 较小 | 较大(功率损耗超过输出功率的50%) | PHS-BS属于节能、增力型传动部件 |
寿命(h),可靠性 | 6000~10000,可靠性较高 | ≈50000,无机械磨损,寿命长,可靠性高 | PHS-BS的可靠性与制造品质有关,AC-LM的可靠性受控制系统稳定性影响 |
对周边的影响 | 没有影响 | 必须采取有效隔磁与防护措施,隔断强磁场对滚动导轨的影响和对铁屑磁尘的吸附 | AC-LM法向磁力与轴向推力之比大约为4:1~5:1 |
工作效率 | 高 | 更高,可使主机生产效率提高20%以上 | |
制造成本 | 比普通滚珠丝杆高,比AC-LM低得多 | 成本高,售价昂贵 | AC-LM在中国的制造技术成熟和量产后,成本和售价可望下降 |
- 高速、超高速、高加速度和生产批量大、要求定位的运动多、速度大小和方向频繁变化的场合。例如汽车产业和IT产业的生产线,精密、复杂模具的制造。
- 大型、超长行程高速加工中心,航空航天制造业中轻合金、薄壁、金属去除率大的整体构件“镂空”加工。例如美国CINCINNATI公司的“Hyper Mach”加工中心(46m);日本MAZAK公司的“HYPERSONIC 1400L超高速加工中心(见图4),x、y轴采用AC-LM,快进速度120m/min,能将整体铝块镂空成飞机零件(Z轴仍用PHS-BS)。
- 要求高动态特性、低速和高速时的随动性、高灵敏的动态精密定位。例如,以Sodick为代表的新一代高性能CNC电加工机床、CNC超精密机床、新一代CPC曲轴磨床、凸轮磨床、CNC非园车床等。
- 轻载、快速特种CNC装备。例如德国DMG的“DML80 Fine Cutting”激光雕刻、打孔机,比利时LVD公司的“AXEL3015S”激光切割机,MAZAK的“Hyper Cear510”高速激光加工机等。
图4 日本MAZAK公司Hypersonic 1400L型超高速龙门式加工中心。X、Y轴采用直线电动机驱动V=120m/min |
关于振兴和发展的思考
- 加快振兴、刻不容缓。在中国,用于实现高速驱动和精密定位的这两类功能部件的发展滞后于市场的需要,与海外存在明显差距。以PHS-BS为例,当海外都已推出第二代、第三代产品时,中国仍处在PHS-BS第一代产品研制的初始阶段,没有商品化。至于用来装备高速、高档数控机床的AC-LM,目前还没有一个技术实力雄厚、具备量产条件的企业向市场提供产品,尚未走出“学院模式”研究阶段。应当清醒地看到:刻不容缓地加快发展AC-LM和PHS-BS,是中国数控装备国产化、产业化的紧迫渴求,也是增强中国综合国力的时代需要。
- 并肩发展,优势互补。虽然AC-LM和PHS-BS并行不悖地在发展,但是,不同的国家有不同的国情,不同企业各有长短,海外对待两种驱动方式的认知度、采用率也是有差异的。而中国的国情是:地大物不博、人口众多、劳力资源丰富,要从中国的国情出发,以科学发展观和新型工业化的指导思想来统筹规划AC-LM和PHS-BS的发展,不可偏废,缺一不可。即使将来AC-LM的技术成熟了、产量上去了、成本下降了,从节能降耗、绿色制造的角度思考,PHS-BS驱动仍有其广阔的市场空间。在AC-LM将成为高速(超高速)、高档数控装备中的主流驱动方式的同时,PHS-BS依然会继续保持在中档高速数控装备中的主流地位,但是如果PHS-BS盲目追求高指标,在AC-LM的优势范围中去“硬拼”,恐怕是得不偿失的。
- 科学发展,重在基础。分析中国PHS-BS发展缓慢的原因,主要在于企业长期忽视基础理论和性能试验方面的投入,发展后劲不足,面对提速后暴露出来的问题不知从何处下手解决。由于我们在滚动螺旋副的摩擦理论、高速和微动时的摩擦特性、滚动体在不同工况下的运动机理、振动与噪声、力矩特性、动静刚度特性等基础理论方面缺乏深入研究,制约了提速的进程。而AC-LM在全数字控制技术、散热、隔磁、电磁干扰、零位方式、增大推力、降低能耗、部件模块化等方面还有大量的基础工作要做。中国高校和科研院所在这方面的研究成果,要尽快转化为生产力,要用先进的科技成果和在实践中不断创新来推动AC-LM和PHS-BS的国产化、产业化。
- 有序发展、正确导向。要对中国的数控装备市场作深入调查,冷静分析。在数控装备中,高速、超高速占多少?高速金切机床、成形机床各占多少?轻载和大型重载占多少?据有关人士预测,到2010年全球将有大约20%的数控机床采用AC-LM。经验表明,数量的预测往往不够准确,如果这个20%是指全部数控机床,那么高速数控机床呢?中国是不是也占20%?我们对市场的分析切忌主观推断,盲目乐观。
上一篇:高速加工需要高品质的数控系统
下一篇:高速加工机床的设计与应用
-
Lehmann数控回转工作台的显著优势
◆紧凑且质量较轻 相对于传统数控回转工作台的一个显著优势:结构极端紧凑,功率更不逊色分好,甚至更佳。 更少的干扰边缘:(GD)-40%;(DD)-41% 可以极为方便地横向操作轴(从上方) 可以十分迅速地夹紧切割刀具:最长的耐用时间
2017-02-24 -
回转工作台的combiFlex模块化系统优势
仅4种φ100-500mm的基本型号,可以提供超过240种配置的数控回转工作台让您选择! combiFlex模块化系统优势主要表现在: 高保值性:随时适应新的要求 型号多样性:GD(大约-50%);DD(大约-50%) 每种尺寸
2017-02-20 -
pL Lehmann数控回转工作台3+2轴替代五轴机床的完整加工
用户是一家锁具和五金配件生产企业,拥有近300名员工。它主要为商业楼宇开发、生产和销售门窗及外墙的固定、操作和密封配件。 用户除了要生产出高品质门五金配件外,创新、高效、高性价比的生产是确保经济成果的另一个支柱,根据各个组件的需要,提
2017-02-20 -
实例讲解配套于高精密磨床的第四轴数控回转工作台
LapmasterWolters公司为了提高其精密磨床的生产力而配备了pL LEHMANN旋转台。高精密的表面加工当然需要高品质的工艺设备,LapmasterWolters数控外圆磨床,作为制造专用于表面精密加工的高精密磨床的国际市场领衔者
2017-02-20