高速铣削编程数控插补

发布日期:2012-10-26    兰生客服中心    浏览:4349

  插补的任务是根据要求的进给速度和允许误差,在每一逼近线段指定的轨迹运动的起点和终点之间计算出若干个中间点的坐标值。由于计算每个中间点坐标所需的时间直接影响CNC的控制速度,计算精度又影响控制精度,因此插补算法对CNC系统的性能至关重要。

  直线插补

  直线和圆弧是构成零件轮廓的基本线条,一般CNC系统都具有直线和圆弧插补功能。现今占主导地位的直线插补计算简便,应用最广泛,但存在一系列问题需要克服解决。常规CNC系统在直线插补时,必需采用高精度的表面描述来作出近似,即要求选取小的弦线误差。零件表面轮廓复杂、曲线曲率变化较大时,就需要增加中间计算点的数量,导致数控程序扩大和执行时间延长,经常会出现好几十MB规模的局部程序。

  CNC系统有一定的工作节奏即插补周期T,通常为1~10ms。它与插补周期运动步长L(mm)和最大进给速度Fmax(m/min)的关系是Fmax=60(L/T)。

  选定插补周期T后,由于加工精度要求选取短的插补直线长度L,不仅会产生大量计算数据,而且直接限制最大进给速度,即所谓的插补周期问题,这同高速切削所要求的高的轨迹进给速度发生矛盾冲突,如图1所示。结果是降低生产率以及加工精度,尤其不利于模型和模具、汽轮机叶片或飞机机身的单件小批量生产。

  直线插补形成一条多边形导线。严格沿这条导线进行轨迹加工,在直线段的转折过渡之处会产生高的轴向加速度,如图2所示。理论上这种加速度趋于无穷大。数控系统必须确保不超越各坐标轴的动力特性即最大允许加速度。这只能通过在尖角处大大降低轨迹运动速度来实现,结果是降低机床生产率。

  如果调节系统没有随动功能,加速度的跳跃还可引起机床振动,并且造成机床各进给轴极大的负荷。总而言之,直线插补在工件表面不仅产生棱面,也产生振动图形。

  样条插补

  与直线插补相比,圆弧、抛物线、椭圆、双曲线等二次曲线插补较精确,其中圆弧插补最为常用。而直接处理样条程序段的NURBS(非均匀有理B样条)插补方法有许多优点,应用日益广泛。根据经验,在同样精度下一条样条程序段能替代5至10条直线程序段。迄今为止流行的多边形的编程,将为直接从CAM系统传递样条轨迹描述的方法,或者通过CNC内部的几何转换即压缩直线程序段所替代。

  建立在三次B样条函数基础上的NURBS函数具有可调参数即常数权因子wi,可以灵活、精确地控制逼近曲线或曲面的形状,能够精确地表示所有二次曲线和曲面,包括圆锥曲线、球、柱、锥等标准几何形状。借助于NURBS函数描述,所有的曲线和曲面在CAD/CAM系统中具有统一的数学表达式,因而便于管理系统之间的数据交换。

  CNC对每一进给轴都需要传递NURBS三次多项式的系数,例如对于x轴有x(t)=a•t3+b•t2+c•t+d。

  这些样条数据必须能够减少数据总量,同时为流畅的加工提供必需的切线和曲率连续的程序段过渡。要求CNC能够通过指定精修多边形程序段的途径,自动光滑处理运动轨迹以获得光滑的零件表面。

更多相关信息