怎样控制薄壁叶片高速铣削加工的变形
发布日期:2013-09-06 兰生客服中心 浏览:4609
薄壁叶片的变形形式主要有弯曲变形和扭转变形。薄壁叶片加工变形主要由工件、刀具、夹具和机床组成的工艺系统产生,主要原因是内应力的释放和切削残余应力产生,因此,减少加工变形的主要措施就是减少应力产生。
目前,减少或消除加工应力最常用的方法有分阶段加工、热处理和高速铣削。
一、分阶段加工
为减小叶片的加工应力,加工过程分为粗加工、半精加工和精加工3个阶段。粗加工主要问题是如何获得高的生产率,切除的余量大,切削热、切削力以及内应力重新分布等因素引起的叶片变形较大;半精加工时余量较小,叶片的变形也较小;精加工时叶片的变形更小。
二、热处理
减少加工变形最有效的措施是热处理,由于粗加工余量大,加工应力相应也大,因此在粗加工和半精加工工序之间增加热处理,以去除加工应力。具体采用什么样的热处理方法要根据零件的材料和性能,按热处理规范进行选择。
三、高速铣削技术
高速铣削采用极浅的切削深度和极窄的切削宽度,因此切削力比较小,和常规相比切削力至少降低30%。这对于加工刚性较差的薄壁叶片来说可以降低加工变形,使这类零件精细加工成为可能。薄壁叶片在加工时容易产生振动,振动会导致叶片变形。因此,对于薄壁结构零件的加工,在保证加工效率的前提下,首先选择高速切削方式,以远离工艺系统的固有频率;此外,对不同壁厚的零件作模态分析,了解工件的不同阶固有频率,然后选择合适的切削速度以求避免发生工件的切削振动。
上一篇:薄壁叶片高速铣削变形补偿
下一篇:薄壁件高速铣削的进给量与刀具偏摆技术
-
飞机零部件制造对高速铣削机床的需求
大飞机零件具有外廓尺寸大、结构复杂、重量轻的特点,在多个对接部位或活动面处有精度要求较高的多面体接头类零件。同时,随着新型材料技术的不断发展和飞机整体强度重量比设计要求的不断提高,复合材料在大飞机中的用量也越来越大。大飞机零件的这些特点对数
2013-09-06 -
高速铣削技术在飞机制造的应用
大飞机数控加工工艺技术的实现,必须依赖于满足使用要求的先进数控设备和高质量的数控刀具,换言之,就是数控设备必须具有大行程、高转速、高进给、高精度和五轴联动等特点;数控刀具必须满足高动平衡等级、高刚性、良好的耐磨性和红硬性等技术要求,刀具接口
2013-09-06 -
铝合金整体结构件高速铣削刀具材料的选择
飞机机体的 60%~70%为加入Si、Cu、Mn等合金元素的7075、7050、2024、6061类热处理预拉伸变形铝合金材料,物理和机械性能如表1所示。 表1 航空铝合金材料的物理与机械性能 铝合金牌号及状态 热膨胀系数(20~1
2013-09-06 -
铝合金高速铣削刀具参数选择
铝合金的高速切削加工,速度很高,刀具前刀面温升高,前角比常规切削时的刀具前角约小10°,后角稍大约5°~8°,主副切削刃连接处需修圆或导角,以增大刀尖角和刀具的散热体积,防止刀尖处的热磨损,减少刀刃破损的概率。在PCD刀具超高速切削铝合金时
2013-09-06