薄壁件高速铣削的进给量与刀具偏摆技术
发布日期:2013-09-06 兰生客服中心 浏览:4375
进给量的局部优化法与刀具偏摆数控补偿技术作为数控加工前期的工艺优化和质量保证研究,分别从抑制加工变形和有效补偿加工变形的思想出发,二者均应用了有限元技术来建立零件的加工变形模型,并分析处理加工过程中的加工变形状况。
进给量的局部优化方法是针对恒定进给量提出的。因为零件某一表面上各部分的刚性及切削力的大小不同,受力变形情况也不一样。利用有限元分析软件进行分析后得到变形分布图,可以看到有些位置的变形大,有些位置的变形小。如果采用恒定的进给量,为了保证变形量最大的位置能达到质量要求,整个表面就得全部采用很小的进给量,而进给量的局部优化就是在变形小的地方采用大进给量,而在变形大的地方采用小的进给量。这样可以在保证变形量的同时,提高效率,减少成本。实验研究表明,采用该方法在提高加工质量的同时可以节省约60%的加工时间。
刀具偏摆数控补偿技术,是在有限元分析基础上,根据模拟仿真加工变形的大小,在数控编程时让刀具在原有走刀轨迹中按变形情况附加补偿运动,补偿因切削力作用而产生的变形。对侧壁加工,通过偏摆刀具进行补偿;对腹板加工,则补偿轴向切深。通过数控补偿,可以将因变形而产生的残余材料切除,一次走刀即可保证薄壁件侧壁或腹板精度,从而达到高效、经济、优质加工薄壁零件的目的。
上一篇:怎样控制薄壁叶片高速铣削加工的变形
下一篇:薄壁结构件圆角高速铣削加工的刀具路径
-
飞机零部件制造对高速铣削机床的需求
大飞机零件具有外廓尺寸大、结构复杂、重量轻的特点,在多个对接部位或活动面处有精度要求较高的多面体接头类零件。同时,随着新型材料技术的不断发展和飞机整体强度重量比设计要求的不断提高,复合材料在大飞机中的用量也越来越大。大飞机零件的这些特点对数
2013-09-06 -
高速铣削技术在飞机制造的应用
大飞机数控加工工艺技术的实现,必须依赖于满足使用要求的先进数控设备和高质量的数控刀具,换言之,就是数控设备必须具有大行程、高转速、高进给、高精度和五轴联动等特点;数控刀具必须满足高动平衡等级、高刚性、良好的耐磨性和红硬性等技术要求,刀具接口
2013-09-06 -
铝合金整体结构件高速铣削刀具材料的选择
飞机机体的 60%~70%为加入Si、Cu、Mn等合金元素的7075、7050、2024、6061类热处理预拉伸变形铝合金材料,物理和机械性能如表1所示。 表1 航空铝合金材料的物理与机械性能 铝合金牌号及状态 热膨胀系数(20~1
2013-09-06 -
铝合金高速铣削刀具参数选择
铝合金的高速切削加工,速度很高,刀具前刀面温升高,前角比常规切削时的刀具前角约小10°,后角稍大约5°~8°,主副切削刃连接处需修圆或导角,以增大刀尖角和刀具的散热体积,防止刀尖处的热磨损,减少刀刃破损的概率。在PCD刀具超高速切削铝合金时
2013-09-06