整体薄壁结构零件腹板的高速铣削加工
发布日期:2013-09-06 兰生客服中心 浏览:4588
对于薄壁结构的腹板或较大的薄板加工,关键问题就是要解决由于装夹力或切削力引起的加工变形。
一、带有辅助支撑的腹板加工
采用低熔点合金(LowMeltingAlloy)辅助切削方案,可有效解决薄板的加工变形问题。利用熔点低于100℃的LMA“U-ALLOY70”作为待加工薄板的基座,或者将LMA浇注入薄壁结构型腔,也可以将LMA与真空吸管相配合组成真空夹具。通过浇注LMA,填补型腔空间,可大大提高工件的刚度,有效抑制了加工变形,在精铣时可实现加工壁厚达到0.05mm。U-ALLOY70具有凝固时的膨胀特性,可以起到一定的填充装卡作用;而且其熔点为70℃,可以在沸水中熔融回收再利用。该方法不仅可以加工高精度的薄板,也可以加工高精度的侧壁。
二、无辅助支撑的腹板加工
对于一个未附加辅助支撑或不能添加辅助支撑的薄壁零件腹板的加工,有效利用零件未加工部分作为支撑的刀具路径优化方案可以有效的解决腹板的加工变形问题(见图)。
图薄壁(腹板)加工示意图
例如在对一个带有腹板的矩形框体件加工中,铣刀从试件中间位置倾斜下刀,在深度方向铣到最终尺寸,然后一次走刀由中间向四周螺旋扩展至侧壁。实验研究表明,该方法较为有效的降低了切削变形及其影响,降低了由于刚性降低而能发生的切削振动的可能,零件的质量和加工效率也有了显著提高。
三、对于腹板的铣削加工具体方法如下:
1、刀具轨迹避免重复,以免刀具碰伤暂时变形的切削面;
2、粗加工分层铣削,让应力均匀释放;
3、采用往复斜下刀方式以减少垂直分力对腹板的压力;
4、保证刀具处于良好的切削状态。
当然,该方法仅在走刀路径方面进行优化,还需结合其它方法(如使用真空夹具等)进一步控制加工变形。
上一篇:薄壁结构件圆角高速铣削加工的刀具路径
下一篇:整体薄壁结构零件的侧壁高速铣削加工
-
飞机零部件制造对高速铣削机床的需求
大飞机零件具有外廓尺寸大、结构复杂、重量轻的特点,在多个对接部位或活动面处有精度要求较高的多面体接头类零件。同时,随着新型材料技术的不断发展和飞机整体强度重量比设计要求的不断提高,复合材料在大飞机中的用量也越来越大。大飞机零件的这些特点对数
2013-09-06 -
高速铣削技术在飞机制造的应用
大飞机数控加工工艺技术的实现,必须依赖于满足使用要求的先进数控设备和高质量的数控刀具,换言之,就是数控设备必须具有大行程、高转速、高进给、高精度和五轴联动等特点;数控刀具必须满足高动平衡等级、高刚性、良好的耐磨性和红硬性等技术要求,刀具接口
2013-09-06 -
铝合金整体结构件高速铣削刀具材料的选择
飞机机体的 60%~70%为加入Si、Cu、Mn等合金元素的7075、7050、2024、6061类热处理预拉伸变形铝合金材料,物理和机械性能如表1所示。 表1 航空铝合金材料的物理与机械性能 铝合金牌号及状态 热膨胀系数(20~1
2013-09-06 -
铝合金高速铣削刀具参数选择
铝合金的高速切削加工,速度很高,刀具前刀面温升高,前角比常规切削时的刀具前角约小10°,后角稍大约5°~8°,主副切削刃连接处需修圆或导角,以增大刀尖角和刀具的散热体积,防止刀尖处的热磨损,减少刀刃破损的概率。在PCD刀具超高速切削铝合金时
2013-09-06